Recreating PSST challenge parameters in YAML
I don't even know why I did this
The following cell is an attempt to recreate the parameters for the PSST challenge in YAML.
common:
fp16: true
log_format: json
log_interval: 50
checkpoint:
no_epoch_checkpoints: true
best_checkpoint_metric: uer
task:
_name: audio_finetuning
data: ???
max_sample_size: 1120000
normalize: false
labels: ltr
dataset:
num_workers: 1
max_tokens: 1120000
skip_invalid_size_inputs_valid_test: true
validate_after_updates: 1000
validate_interval: 1
valid_subset: valid
distributed_training:
ddp_backend: no_c10d
distributed_world_size: 1
criterion:
_name: ctc
zero_infinity: true
optimization:
max_update: 12000
lr: [0.00005]
sentence_avg: true
weight_decay: 0.0
update_freq: []
optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1e-08
lr_scheduler:
_name: tri_stage
phase_ratio: [0.33, 0.33, 0.33]
final_lr_scale: 0.05
model:
_name: wav2vec_ctc
w2v_path: ???
apply_mask: true
mask_prob: 0.65
mask_channel_prob: 0.25
mask_channel_length: 64
layerdrop: 0.1
activation_dropout: 0.1
feature_grad_mult: 0.0
freeze_finetune_updates: 0
final_dropout: 0.1
attention_dropout: 0.1
This cell is a modification of base_10m.yaml from the fairseq source
# @package _group_
common:
fp16: true
log_format: json
log_interval: 50
checkpoint:
save_interval: 1000
save_interval_updates: 50
keep_interval_updates: 1
no_epoch_checkpoints: true
best_checkpoint_metric: uer
task:
_name: audio_pretraining
data: ???
max_sample_size: 1120000
normalize: false
labels: ltr
dataset:
num_workers: 1
max_tokens: 1120000
skip_invalid_size_inputs_valid_test: true
validate_after_updates: 1000
validate_interval: 1
valid_subset: valid
distributed_training:
ddp_backend: no_c10d
distributed_world_size: 1
criterion:
_name: ctc
zero_infinity: true
optimization:
max_update: 12000
lr: [0.00005]
sentence_avg: true
update_freq: [4]
optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1e-08
lr_scheduler:
_name: tri_stage
phase_ratio: [0.1, 0.4, 0.5]
final_lr_scale: 0.05
model:
_name: wav2vec_ctc
w2v_path: ???
apply_mask: true
mask_prob: 0.65
mask_channel_prob: 0.25
mask_channel_length: 64
layerdrop: 0.1
activation_dropout: 0.1
feature_grad_mult: 0.0
final_dropout: 0.1
attention_dropout: 0.1
freeze_finetune_updates: 0